loader image
Sunday, January 4, 2026
81.7 F
McAllen
- Advertisement -

Using 4D Printing to Enable Vascularization, Bone Tissue Regeneration, Spinal Fusion

4D printing helps create a biomimetic microchannel scaffold made of collagen and hydroxyapatite.

Translate to Spanish or other 102 languages!

Surface, cross-sectional optical/SEM images showing the uniaxially aligned surface patterns and microchannels within the struts of the fabricated collagen scaffolds. A schematic showing the osteogenesis and angiogenesis of the fabrication of mineralized, microchanneled collagen scaffold. Hanjun Hwangbo, Hyeongjin Lee

Mega Doctor News

- Advertisement -

Newswise — Washington – Spinal fusion is frequently performed to restore spinal stability in patients with spinal diseases, such as spinal stenosis, vertebral fractures, progressive deformities, and instability. In the past two decades, there has been marked increase in the number of people over 65 years in age who have needed spinal fusion surgery.

While autogenous bone grafts have long been considered the reference standard for spinal fusion, painful pseudoarthrosis remains a leading cause of poor clinical outcomes. Many researchers have consequently focused on trying to create a biomimetic scaffold that induces vascularization to enable bone tissue regeneration and spinal fusion.

In Applied Physics Reviews, from AIP Publishing, researchers from Sungkyunkwan University in South Korea present a solution to address the challenge of fabrication of a biomimetic scaffold. The team designed a microchannel scaffold made of a collagen and hydroxyapatite combination, with each strut consisting of micrometer-scaled microchannels. The microchannels have induced growth of blood vessels in a mouse model.

- Advertisement -

“Since the fabrication of biomimetic scaffold is a challenging issue, the innovation of this study lies in adding extra hierarchy to the structure in the form of microchannels,” said author Geun Hyung Kim. “This was achieved through a 4D printing strategy, where one-way shape morphing is used.”

The researchers printed immiscible polymer blends that act as a double negative template in order to fabricate thebiomimetic collagen/hydroxyapatite hierarchical scaffold. They followed that by one-way shape morphing (4D printing) and coating processes.

Collagen is known as a hydrophilic material, and numerous in vivo studies have suggested it possesses excellent cellular activities. In the case of the microchanneled collagen/hydroxyapatite scaffold, the researchers noted significantly higher water-absorbing capability, compared to a conventional collagen scaffold, as a result of the capillary pressure supplied by the microchannels. Consequently, the in vivo studies have suggested excellent infiltration of cells into microchannels.

Going forward, the researchers will investigate enhancing the mechanical properties of the scaffold. Furthermore, controlling the mechanical properties of the scaffold would enable versatile applications of the microchanneled collagen/hydroxyapatite scaffold.

- Advertisement -

“I believe that the designed scaffold can have multiple applications with tubular structures such as muscle, tendon, and nerve,” said Kim.

Skeletal muscle is a hierarchical organization where the muscle fibers are encapsulated in microchannels known as endomysium. Therefore, the designed scaffold could act as endomysium to enable the infiltration of muscle fibers into the channels.

- Advertisement -
- Advertisement -

- Advertisement -

More Articles

South Texas Health System Welcomes Arrival of First Baby Of 2026

Weighing 7 pounds, 12 ounces and measuring 20 inches in length, Little Samuel arrived at The Maternity Center at South Texas Health System Edinburg at 6:38 a.m., making him the first newborn delivered at an STHS facility in 2026.

DHR Health Women’s Hospital Welcomes the First Baby of 2026

DHR Health Women’s Hospital rang in the New Year with a joyful milestone: the birth of its first baby of 2026.

STC Vocational Nursing Graduate Recognized for Extraordinary Compassion with DAISY Award

South Texas College Vocational Nursing graduate Ana Alvarez never imagined that changing careers would lead to earning a prestigious nursing honor for her attention to patients and excellence in care before becoming a registered nurse. 

South Texas Health System Celebrates Birth of Christmas Baby

The arrival of a new infant is widely considered a special cause for celebration, marking a new life, a miracle and a major family milestone.
- Advertisement -
×