loader image
Monday, November 24, 2025
77 F
McAllen
- Advertisement -

Using 4D Printing to Enable Vascularization, Bone Tissue Regeneration, Spinal Fusion

4D printing helps create a biomimetic microchannel scaffold made of collagen and hydroxyapatite.

Translate to Spanish or other 102 languages!

Surface, cross-sectional optical/SEM images showing the uniaxially aligned surface patterns and microchannels within the struts of the fabricated collagen scaffolds. A schematic showing the osteogenesis and angiogenesis of the fabrication of mineralized, microchanneled collagen scaffold. Hanjun Hwangbo, Hyeongjin Lee

Mega Doctor News

- Advertisement -

Newswise — Washington – Spinal fusion is frequently performed to restore spinal stability in patients with spinal diseases, such as spinal stenosis, vertebral fractures, progressive deformities, and instability. In the past two decades, there has been marked increase in the number of people over 65 years in age who have needed spinal fusion surgery.

While autogenous bone grafts have long been considered the reference standard for spinal fusion, painful pseudoarthrosis remains a leading cause of poor clinical outcomes. Many researchers have consequently focused on trying to create a biomimetic scaffold that induces vascularization to enable bone tissue regeneration and spinal fusion.

In Applied Physics Reviews, from AIP Publishing, researchers from Sungkyunkwan University in South Korea present a solution to address the challenge of fabrication of a biomimetic scaffold. The team designed a microchannel scaffold made of a collagen and hydroxyapatite combination, with each strut consisting of micrometer-scaled microchannels. The microchannels have induced growth of blood vessels in a mouse model.

- Advertisement -

“Since the fabrication of biomimetic scaffold is a challenging issue, the innovation of this study lies in adding extra hierarchy to the structure in the form of microchannels,” said author Geun Hyung Kim. “This was achieved through a 4D printing strategy, where one-way shape morphing is used.”

The researchers printed immiscible polymer blends that act as a double negative template in order to fabricate thebiomimetic collagen/hydroxyapatite hierarchical scaffold. They followed that by one-way shape morphing (4D printing) and coating processes.

Collagen is known as a hydrophilic material, and numerous in vivo studies have suggested it possesses excellent cellular activities. In the case of the microchanneled collagen/hydroxyapatite scaffold, the researchers noted significantly higher water-absorbing capability, compared to a conventional collagen scaffold, as a result of the capillary pressure supplied by the microchannels. Consequently, the in vivo studies have suggested excellent infiltration of cells into microchannels.

Going forward, the researchers will investigate enhancing the mechanical properties of the scaffold. Furthermore, controlling the mechanical properties of the scaffold would enable versatile applications of the microchanneled collagen/hydroxyapatite scaffold.

- Advertisement -

“I believe that the designed scaffold can have multiple applications with tubular structures such as muscle, tendon, and nerve,” said Kim.

Skeletal muscle is a hierarchical organization where the muscle fibers are encapsulated in microchannels known as endomysium. Therefore, the designed scaffold could act as endomysium to enable the infiltration of muscle fibers into the channels.

- Advertisement -
- Advertisement -

- Advertisement -

More Articles

UT Health San Antonio Center For Brain Health Celebrates with Ribbon Cutting

University of Texas System and UT San Antonio leaders today hailed “a new era of hope, healing and discovery” for neurological patients and their families with a ribbon-cutting for the UT Health San Antonio Center for Brain Health, a $100 million, 103,000-square-foot facility that will bring specialty care, therapy, diagnostics and research under one ro

Paxton Secures $41.5M from Pfizer & Tris Pharma for Providing Adulterated Drugs to Children

Attorney General Ken Paxton has secured a $41.5 million settlement with Pfizer and Tris Pharma for allegedly providing adulterated pharmaceutical drugs to Texas children in violation of the Texas Health Care Program Fraud Prevention Act (“THFPA”).    

STHS’ South Texas Healthy Living Episode on Diabetes Awareness, Nov. 30th

The United States is experiencing a national health crisis as the incidence of diabetes continues to climb across the country.

DHR Health Encourages Early Detection with $99 Lung Cancer Screening Special Thru Dec. 31st

Lung cancer remains the leading cause of cancer death in the United States, accounting for about one in five cancer deaths nationwide. According to the American Cancer Society, an estimated 226,650 new cases of lung cancer will be diagnosed in 2025, and 124,730 people are expected to die from the disease. Each year, lung cancer claims more lives than colon, breast, and prostate cancers combined.
- Advertisement -
×