loader image
Friday, May 3, 2024
89.2 F
McAllen
We Welcome your Press Release
- Advertisement -

How Does the Brain Process Heat as Pain?

Translate to Spanish or other 102 languages!

The world has changed since 1664, when French philosopher and scientist Rene Descartes first claimed the brain was responsible for feeling the sensation of pain.
The world has changed since 1664, when French philosopher and scientist Rene Descartes first claimed the brain was responsible for feeling the sensation of pain. Image for for illustration purposes

Mega Doctor News

- Advertisement -

By Case Western Reserve University

Newswise – CLEVELAND – The world has changed since 1664, when French philosopher and scientist Rene Descartes first claimed the brain was responsible for feeling the sensation of pain.

However, a key question remains: How exactly does the human brain feel pain? Specifically, thermal pain—like that experienced when touching an open flame or a hot pan while cooking.  

- Advertisement -

A team of researchers in the neurosciences department at the Case Western Reserve University School of Medicine think they’ve found an answer—that a neural circuit involving spinal neurons and a signaling pathway––are responsible for how burning pain is sensed.

They believe their discovery, published recently in the journal Neuron, could lead to more effective treatment for chronic, pathological pain—such as shooting, stabbing and burning pain—because it may involve the same signaling pathway.

“We know that heat, cold, pressure and itching stimulations to our skin result in appropriate feelings in the brain. However, the neurons encoding the heat signals in the spinal cord were unclear,” said Hongsheng Wang, study lead author and a postdoctoral fellow at the School of Medicine. “Our study identified a group of interneurons in the spinal cord required for heat sensation. We also found a signaling pathway contributes to heat hypersensitivity caused by inflammation or nerve injuries.”

The study

- Advertisement -

The brain controls everything we do, from our perception of the world around us to how we move our bodies and experience sensations. The process involves neurons, which are cells that act as messengers to transmit information between the brain and nervous system. The neurons send information through complex circuits throughout the body.

The research team looked at neurons in the spinal cord and their role in thermal pain by analyzing mouse models and their response to heated plates. During this process, the team identified the activation of a “novel,”or newly discovered, class of spinal cord neurons (called ErbB4+) that process heat signals to the spinal cord. 

They wanted to look further into whether these neurons specifically are responsible for thermal pain. There are several ways to test this, including destroying the ErbB4+ neurons.

The researchers expressed a toxin specifically targeting the ErbB4+ neurons. Once the neurons were destroyed, the response to heat pain was impaired. This demonstrated that ErbB4+ neurons are specifically tied to how thermal pain is sensed and, when destroyed, pain is not felt less.

The team also examined the role of neuregulin 1 (NRG1), a protein involved in many cellular functions. They found that NRG1 and its receptor tyrosine kinase ErbB4 (often referred to as the NRG1 signaling) is also involved in the sensation of thermal pain.

The findings

“Pain is a sensation we have all experienced. For most of us, pain is temporary,” said Lin Mei, professor and chair of the Department of Neurosciences at the School of Medicine and study corresponding author. “However, for patients with pathological pain, the pain experience is unending, with little hope for relief. Scientists have long believed it’s a result of dysfunctional neuronal activity.”

Mei said their study showed that pathological pain can be reduced by injecting an ErbB4+ inhibitor or an NRG1 neutralizing peptide.

The application of these discoveries may go beyond the therapeutic treatment of pathological pain.

“Both NRG1 and ErbB4 are risk genes of many brain disorders including major depression and schizophrenia,” Mei said. “Further studies are warranted to show if the mechanism of heat pain and pathological pain also plays a role in different types of pain experienced by those who have brain disorders.”

###

Case Western Reserve University is one of the country’s leading private research institutions. Located in Cleveland, we offer a unique combination of forward-thinking educational opportunities in an inspiring cultural setting. Our leading-edge faculty engage in teaching and research in a collaborative, hands-on environment. Our nationally recognized programs include arts and sciences, dental medicine, engineering, law, management, medicine, nursing and social work. About 5,800 undergraduate and 6,300 graduate students comprise our student body. Visit case.edu to see how Case Western Reserve thinks beyond the possible.

- Advertisement -
- Advertisement -

- Advertisement -

More Articles

TMA Bestows Highest Honor to Congressman Burgess 

“After serving the people of Texas as a physician for over 25 years and working on health care policies in Congress for the past 22 years, I’ve learned the health care system continues to grow and expand day by day,” said Dr. Burgess.

What’s health care like in rural America? 

There are plenty of reasons why 1 in 5 Americans live in rural areas.

Governor Abbott, THECB Announce Chair of Healthcare Workforce Task Force

“Victoria Ford brings a wealth of expertise in healthcare to this committee, and we look forward to the innovative solutions that will come out of the Healthcare Workforce Task Force in the fall,” said Commissioner of Higher Education Harrison Keller.

New Technology Benefits Liver Transplants

When it comes to organ donations, every second counts, and that’s why Cleveland Clinic surgeons are using new technology to help preserve livers before they’re transplanted. Image for illustration purposes
- Advertisement -
×